viernes, 21 de mayo de 2010
Pendiente de la recta normal
Pendiente de la recta normal
La pendiente de la recta normal a una curva en un punto es la opuesta de la inversa de la pendiente de la recta tangente, por ser rectas perpendiculares entre sí.
Pendiente de la recta normal
Es decir, es la opuesta de la inversa de la derivada de la función en dicho punto.
Tangente de beta
Recta normal a una curva en un punto
La recta normal a a una curva en un punto a es aquella que pasa por el punto (a, f(a)) y cuya pendiente es igual a la inversa de la opuesta de f'(a).
Ecuación normal
Hallar la ecuación de la recta tangente y normal a la parábola y = x2 + x + 1 paralela a la bisectriz del primer cuadrante.
Sea el punto de tangencia (a, b)
m = 1
f'(a) = 2a + 12a + 1 = 1 a = 0
Punto de tangencia:(0, 1)
Recta tangente:
y − 1 = x y = x +1
Recta normal:
m= 1P(0, 1)
y − 1 = −x y = −x + 1
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario